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Abstract. We study the electronic and magnetic structure of AuFe alloys for varying Fe
concentrations. The basis of our study is the augmented-space recursion in conjunction with
the local spin-density approximation. We study magnetism from an itinerant-electron viewpoint
and show that at low Fe concentrations the random phase arrangement is the more stable phase at
T = 0 K as compared to the ferromagnetic, antiferromagnetic and paramagnetic arrangements.
At higher concentrations the ferromagnetic arrangement becomes the most stable but the average
moment decreases with increasing Au concentration.

1. Introduction

AuFe alloys were among the very first alloy systems to be studied because of their interesting
behaviour in the low-Fe-concentration regime [1]. The so-called spin-glass phase in these
concentration regimes exhibited novel features which made the study of the generic spin-
glass transition a topic of considerable interest for decades. Mössbauer studies showed the
emergence of the characteristic six-finger pattern at the spin-glass transition temperatureTg,
indicating the existence of locally frozen magnetic moments. The dc susceptibility showed
a sharp cusp at about the same temperatures, confirming the freezing out of spin degrees
of freedom locally. However, there was no indication of long-ranged magnetic ordering or
a global magnetic moment. Magnetic relaxation was anomalously slow; there was a large
widening and an off-centre shift of the hysteresis curve below the transition. But no response
functions showed anomalies around these temperatures. For large Fe concentrations the alloys
showed ferromagnetic behaviour of more or less the standard kind. The averaged magnetization
decreased with lowering of Fe concentrations, until at around 12–15% of Fe a very complex
behaviour sets in which has been described variously in terms of re-entrant spin glasses,
randomly canted phases and cluster glasses [3]. This regime then smoothly fits into the spin-
glass behaviour below 12% of Fe. The phase diagram is shown in figure 1.
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(a)
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Figure 1. (a) The magnetic phase diagram for AuFe alloys. (b) A schematic diagram of the different
spin arrangements: (a) random ferromagnetic, (b) random antiferromagnetic and (c) random spin
arrangements.
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Theoretical efforts to understand the nature of these magnetic phases have been extensive.
Most approaches, from the simple, down-to-earth rock magnetism ideas to the more
sophisticated replica models [2], were invariably based on localized spin statistical models.
However, for whole classes of alloys like AuFe and certainly CuMn and a series of ternary
stainless steels, the magnetism is most probably of itinerant character. Descriptions of spin
glasses from an itinerant-electron viewpoint have been sparse indeed. Muñoz et al [4]
attempted to provide a first-principles local spin-density approximation (LSDA) picture of
AgMn spin-glass alloys within the Korringa–Kohn–Rostoker coherent potential approximation
(KKR-CPA). Spin-glass alloys had been studied earlier within the KKR-CPA by Linget al [5].
Recently Linget al [6] also studied AuFe alloys using the KKR-CPA and focused on the
origin of short-ranged ordering in these alloys. A complete understanding of the static and
dynamic response of these alloys from first principles is still beyond our capability. In this
communication we shall attempt to achieve an understanding of the comparative stability of
different magnetic arrangements atT = 0 K. Linget al [6] have modelled the high-temperature
paramagnetic state in terms of the random moment arrangement. We feel that the random
moment arrangement of frozen spins is more appropriate in describing theT = 0 K state. We
shall consider hybridized s and d electrons in Au and Fe as contributing to a Fermi liquid ground
state. We shall study the charge and spin densities using the local spin-density approximation
(LSDA) and the tight-binding linearized muffin-tin orbital technique (TB-LMTO) within the
atomic sphere approximation (ASA) introduced by Andersen and Jepsen [7]. The disorder
effect is studied using the augmented-space recursion (ASR) introduced by us earlier [8].

2. Methodology

2.1. The magnetic phases

Description of different magnetic phases within the LSDA involves the evolution of local
magnetic moments in the vicinity of ion cores because of the distribution of the valence
electron charge. Each lattice site in the face-centred cubic structure is occupied by an ion core:
in our case randomly by either Fe or Au. Associated with each ion core is a cell or a sphere,
so defined that the charge density contained in the sphere is thought to belong to that ion core
alone. Ideally such cells or spheres should not overlap, and this division of space is to a certain
extent arbitrary. Within these cells the valence electrons carrying spinσ ‘see’ a binary random
spin-dependent potentialV νσ (r), whereν = Au or Fe andσ = ↑ or ↓.

The charge density within the cells can be obtained by solving the Schrödinger equation
within the LSDA. The charge density over the solid can be written as

ρσ (r) = −(1/π) Im
∑
L

∫ EF

−∞

[
x〈GFe,σ

LL (r, r, E)〉av + (1− x)〈GAu,σ
LL (r, r, E)〉av

]
dE

where〈GFe,σ
LL (r, r, E)〉av and〈GAu,σ

LL (r, r, E)〉av are partially averaged Green functions with
the lattice siter occupied by a Fe or Au ion-core potential corresponding to spinσ . The
Au sites are almost spin independent (except for a very small induced moment) and do not
appreciably contribute to local moment densities.

For the random ferromagnetic spin arrangement we proceed as follows: we consider all
cells to be identical in that they all carry identical average charge densities. We shall borrow
the notation of Andersen and Jepsen [7] to write functions likef̃ (rR) which aref (rR) as long
asr lies in a cell labelled byR and is zero outside. The ferromagnetic charge densities are
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defined as

ρ1(r) =
∑
R

ρ̃↑(rR)

ρ2(r) =
∑
R

ρ̃↓(rR).
(1)

The magnetic moment per cell (atom) is then defined by

m = (1/N)
∫

d3r
[
ρ1(r)− ρ2(r)

] = (1/N)∑
R

∫
r∈R

d3r
[
ρ̃↑(rR)− ρ̃↓(rR)

]
= (1/N)

∑
R

∫
r∈R

d3r m̃(rR).

Since all cells are identical, the above calculation need be done only for one typical
cell. Within the TB-LMTO-ASA the cells are replaced by inflated atomic spheres and the
remaining interstitial space is neglected. The problem is then one of a binary alloy with an
almost non-magnetic charge density due to the Au ion cores and a magnetic one due to the Fe
ones.

To describe the antiferromagnetic arrangement, we divide the lattice up into two sublattices
L, L′ and redefine the antiferromagnetic charge densities as follows:

ρ1(r) =
∑
R

[
ρ̃↑(rR)nR + ρ̃↓(rR)(1− nR)

]
ρ2(r) =

∑
R

[
ρ̃↓(rR)nR + ρ̃↑(rR)(1− nR)

] (2)

wherenR takes the value 0 ifR ∈ L′ and 1 ifR ∈ L. If the lattice is nested then it is easy to
see that the total magnetic moment per cell (atom) now becomes zero averaged over the entire
lattice. However, there are local magnetic moments in each cell which alternate in sign from
one sublattice to another. The non-zero staggered magnetic moment per cell is given by

mS = (1/N)
∑
R

∫
r∈R

d3r m̃(rR)(1− 2nR).

For the paramagnetic arrangement, the charge densities become independent of spin:
ρ1(r) = ρ2(r). The local moment density itself vanishes. Not only is the globally averaged
magnetic moment per cell (atom) zero, but so is the magnetic moment in any cell. This
distinguishes the paramagnetic phase from the antiferromagnetic one.

In both of the above cases the problem reduces to that of a binary random alloy between
non-magnetic Au atoms and moment-carrying (or non-magnetic in the case of paramagnetic)
Fe atoms.

Finally we shall consider the random spin arrangement. Here we shall assume that the
cells are randomly occupied by the almost non-magnetic Au ion-core potentialsV Au(r) with
probability 1− x and eitherV Fe

↑ (r) or V Fe
↓ (r) with equal probabilities(x/2). The charge

densities have expressions identical to those for the antiferromagnetic case:

ρ1(r) =
∑
R

[
ρ̃↑(rR)nR + ρ̃↓(rR)(1− nR)

]
ρ2(r) =

∑
R

[
ρ̃↓(rR)nR + ρ̃↑(rR)(1− nR)

]
except that thenR are nowrandom variablestaking the values 0 and 1 with probabilities 1/2.
Since〈nR〉av = 1/2, it is easy to see that the globally averaged moment density is again zero,
but the local magnetic moment, unlike the paramagnetic arrangement, is still non-zero.
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If we look at equation (1), it is important to note that although in both the ferromagnetic
and the random spin configurations we have partially averaged Green functions, in the former
we have a Fe or Au ion core occupying the siter immersed in a background of a random binary
alloy: Fe-upor Fe-downandAu, while in the latter an Fe or Au ion occupies the same site but
in a background of a ternary random alloy of Fe-upandFe-downandAu. The descriptions of
randomness in the electronic structures are different in the two cases.

It is also important to note here that the description is basically from anitinerant viewpoint.
The valence electron cloud which gives rise to the local moments because of a persistent
difference between the charge densitiesρ1 andρ2 in the ion-core cells is truly delocalized and
does not belong to any particular ion core.

2.2. The augmented-space recursion

In earlier communications we have described how to deal with random binary [9] and ternary
alloys [10] within the framework of the tight-binding linearized muffin-tin orbital method
(TB-LMTO) of Andersen and Jepsen [7] within the augmented-space recursion (ASR). The
procedure provides us with a first-principles, self-consistent determination of the configuration-
averaged Green function of the disordered alloy. Subsequently we may obtain the density of
states, the Fermi energies, the charge and magnetization densities and the total energies of the
system. In a series of communications on ordering energies, antiphase boundary energies and
phase stabilities of various alloy systems, both non-magnetic and magnetic, we have established
the accuracy and usefulness of the TB-LMTO-ASR [8,9,13,15]

Here we need only list the expressions used and refer the reader to the above references for
the mathematical details. We shall give the expressions for the ternary alloy alone, since the
binary alloy can be thought of as a special case where the concentration of the third component
goes to zero. We begin by setting up a muffin-tin potential with centres at the bunch of
atomic sitesR on a lattice. We inflate the muffin tins into atomic spheres and start from a
most-localized TB-LMTO Hamiltonian with random matrix elements:

H
β

RL,R′L′ = (C̃RLδij δLL′)PRL + (1̃1/2
RLS

β

RL,R′L′1̃
1/2
R′L′)TRL,R′L′ (3)

whereP and T are projection and transfer operators in the Hilbert space spanned by the
minimal tight-binding basis and

C̃RL = CB
L +

1

2
(CA

L − CC
L)nR +

1

2
(CA

L +CC
L − 2CB

L)n
2
R

1̃RL = 1B
L +

1

2
(1A

L −1C
L)nR +

1

2
(1A

L +1C
L − 21B

L)n
2
R.

Here the potential parameters are labelled with A, B and C which refer to the three constituents
of the alloy, and the occupation variables{ni} randomly take the values 1, 0 or−1 according
to whether the site labelled byi is occupied by the constituents A, B or C. In a perfectly
random alloy the probabilities of such occupations are proportional to the concentrations of
the constituents,xA, xB andxC:

p(nR) = xAδ(nR − 1) + xBδ(nR) + xCδ(nR + 1). (4)

The augmented-space method now constructs operatorsM(R) andN(R) corresponding to
the variablesnR andn2

R in the configuration space of rank 3 of each site occupation,φ(R):

M(R) =
∑
kk′
0kk′T (R)kk′

N(R) =
∑
kk′
Skk′T (R)kk′
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whereT (R)kk′ is the projection operatorPi,k if k = k′ and the transfer operatorTi,kk′ if k 6= k′,
both acting on the configuration spaceφ(R).

The augmented-space theorem then tells us that the configuration average of the Green
function is exactly equal to the following matrix element of the Green function corresponding
to the augmented Hamiltonian:

〈GRR′(E)〉av = 〈R ⊗ {∅} |(EĨ − H̃ )−1|R′ ⊗ {∅}〉 (5)

where

H̃ =
∑
RL

CB
RLI ⊗ I +

∑
RL,R′L′

hBB
RL,R′L′I ⊗ TRL,R′L′ +

∑
RL

∑
k 6=k′

ERLkk′ T
(R)
kk′ ⊗ PRL + · · ·

+
∑

RL,R′L′

∑
kk′

{
(hBA
RL,R′L′0kk′ + h

BC
RL,R′L′Skk′)T

(R)
kk′ ⊗ TRL,R′L′

}
+ · · ·

+
∑

RL,R′L′

∑
kk′

{
(hAB
RL,R′L′0kk′ + h

CB
RL,R′L′Skk′)T

(R′)
kk′ ⊗ TRL,R′L′

}
+ · · ·

+
∑

RL,R′L′

∑
k,k′

∑
k′′,k′′′

M
RL,R′L′
k,k′,k′′,k′′′T

(R′)
k′k′′ ⊗ T (R)kk′′′ ⊗ TRL,R′L′ (6)

ERLkk′ = (1/2)(CA
L − CC

L)0kk′ + (1/2)(C
A
L +CC

L − 2CB
L)Skk′

M
RL,R′L′
kk′k′′k′′′ = (hAA

RL,R′L′ + h
AC
RL,R′L′ + h

CA
RL,R′L′)0k′k′′Sk,k′′′ + hCC

RL,R′L′Sk′k′′Skk′′′
and

h
xy

RL,R′L′ = (1x
L)

1/2S
β

RL,R′L′(1
y

L′)
1/2.

The initial TB-LMTO potential parameters are obtained from suitable guessed potentials
as described in the article by Andersen and Jepsen [7]. In subsequent iterations the potential
parameters are obtained from the solution of the Kohn–Sham equation{

− h̄
2

2m
∇2 + V νσ − E

}
φνσ (rR, E) = 0 (7)

where

V νσ (rR) = V νσcore(rR) + V νσHar(rR) + V νσxc (rR) + VMad. (8)

Hereν refers to the species of atom sitting atR andσ the spin component. The electronic
position within the atomic sphere centred atR is given byrR = r −R. The core potentials are
obtained from atomic calculations and are available for most atoms.

The Hartree potential needs discussion. Let us denote the atomic sphere centred atR by
SR. If we wish to obtain the Hartree potential within the atomic sphereSR when an atom of the
typeν sits atR, the configuration space at the siteR is projected onto the fixed configuration
ν, while the configuration at the remaining sites is, say, random binary. Let us denote the
‘average state’ by{ν ∈ R ⊗ ∅} (the reader is referred to Sahaet al [8] for the details of the
configuration notation and the basic augmented-space theorem); then,

V
ν↑
Har(rR) = e2

∫
SR

d3r ′R
ρν↑(r

′
R)

|rR − r ′R|
· · · + e2

∑
R′′ 6=R

∫
SR′′

d3r ′R′′
〈ρ(r ′R′′)〉
|rR − r ′R′′ |

· · ·

+ e2
∑
R′′ 6=R

∫
SR′′

d3r ′R′′
δρ(r ′R′′)
|rR − r ′R′′ |

where

δρ(r ′R′′) =
−1

π
Im
∫ EF

−∞
dE

[〈{r ′R′′ ⊗ A ∈ R′′ ⊗ ∅}|G̃(E)⊗ M̃R′′ |{r ′R′′ ⊗ A ∈ R′′ ⊗ ∅}〉 · · ·

· · · − 〈{r ′R′′ ⊗ B ∈ R′′ ⊗ ∅}|G̃(E)⊗ M̃R′′ |{r ′R′′ ⊗ B ∈ R′′ ⊗ ∅}〉
]
.
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G̃(E) is the augmented-space resolvent(zĨ−H̃ )−1 andM̃R′′ is the configuration operator,
e.g. for the binary randomness̃MR′′ = I ⊗ · · · ⊗MR′′ ⊗ I ⊗ · · · and, ifx is the concentration
of the A component,

MR′′ =
(

0
√
x(1− x)√

x(1− x) 1− x

)
.

The first two terms are identical to the usual expressions for the CPA [6]. Of course, the
partially averaged and averaged charge densities in the ASR have the effects of configuration
fluctuation of the immediate environment of the atomic site associated with the atomic sphere
included. The last term represents configuration fluctuations in the charge densities associated
with atomic spheres other thanSR. This correction is taken only up to the nearest-neighbour
environment ofSR.

The exchange–correlation potential is a functional of the charge and magnetic moment
densitiesρν↑(rR), ρν↓(rR), mν↑(rR) andmν↓(rR). We have used the von Barth–Hedin form
of the exchange functional. For a random alloy the Madelung potential is difficult to define
as it depends upon the distant environment in a given configuration. We choose our atomic
sphere radii of the components in such a way that they preserve the total volume on average
and individual atomic spheres are neutral. The effective Madelung term then vanishes.

As in the CPA calculations, we iterate until the total energy and moments of the charge
density converge. In this sense our calculations are self-consistent in the LSDA sense.

In spite of several publications describing it in detail, it seems that there still remains
confusion over what the TB-LMTO-ASR actually achieves. It may be relevant to comment
on this in brief here. The ASR obtains averaged quantities like〈Gσ

LL(r, r, E)〉av and partially
averaged quantities like〈Gνσ

LL(r, r, E)〉νσ via recursion in the full augmented space. Whereas
in the coherent potential approximation (CPA) the entire environment of an atom is replaced by
an effective medium, the ASR includes the effect of the immediate environment. If the disorder
is homogeneous, it has been shown [11] that there exists a corresponding translation symmetry
in augmented space which ensures that the effects of the environment on each atom are identical.
In a recent communication we have demonstrated the convergence of integrals involving the
averaged density of states with the number of exact recursion steps and termination [12], and
have shown that given a preassigned allowable error window, the recursion can be tailored such
that the error in the integrals remains within the window. In a series of communications on
ordering energies, antiphase boundary energies and phase stabilities of various alloy systems,
both non-magnetic and magnetic, we have established the accuracy and usefulness of the
TB-LMTO-ASR [8,9,13–15]

2.3. Computational details

For the calculation of the component-projected averaged density of states of the binary and
ternary models related to the four different magnetic arrangements, we have used a real-space
cluster of 400 atoms and an augmented-space shell up to the sixth-nearest neighbour from the
starting state. Eight pairs of recursion coefficients were determined exactly and the continued
fraction terminated by the analytic terminator due to Luchini and Nex. In a recent paper, Ghosh
et al[12] have discussed the convergence of various integrated quantities, like the Fermi and the
band energies, within the augmented-space recursion. The convergence tests suggested by the
authors were carried out to prescribed accuracies. We have reduced the computational burden
of the recursion in the full augmented space by using the local symmetries of the augmented
space to reduce the effective rank of the invariant subspace in which the recursion is confined [9]
and using the seed recursion methodology with fifteen energy seed points uniformly across the
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spectrum. Both the reduction techniques have been described in detail in the references and
readers are referred to them for details. It is important to emphasize this point, since there have
been erroneous statements made earlier that although the augmented-space recursion method
is attractive mathematically, it was not feasible for application as a computational technique
to realistic alloys. Furthermore, it has been shown [9] that augmented-space recursion with
an analytic terminatoralwaysproduces herglotz results, whether we use the homogeneous
disorder model as in this paper or the version including short-ranged order [16] or local lattice
distortions [17].

We have chosen the Wigner–Seitz radii of the two constituent atoms Fe and Au in such a
way that the average volume occupied by the atoms is conserved. Within this constraint we
have varied the radii such that the final configuration has neutral spheres. This provides the
simplest way of eliminating the necessity of including the averaged Madelung energy part in the
total energy of the alloy. The definition and computation of the Madelung energy in a random
alloy had faced controversy in recent literature [18] and to this date no really satisfactory
resolution of the problem exists. Simultaneously we have made sure that the sphere overlap
remains within the 15% limit prescribed by Andersen.

The calculations have been made self-consistent in the LSDA sense; that is, at each stage
the charge densities are calculated from the augmented-space recursion and the new potential
is generated by the usual LSDA techniques. This self-consistency cycle was converged in both
total energy and charge to errors of the order of 10−5. We have also minimized the total energy
with respect to the lattice constant. The quoted results are those for the minimum-energy
configuration. No short-ranged order due to chemical clustering has been taken into account
in these calculations, nor any lattice distortions due to the size differences between the two
constituents.

3. Results

Figure 1(a) gives us an idea of the magnetic phase diagram for AuFe. Note that up to the lowest
Au concentrations the alloys are all face-centred cubic. The phase digram has been culled out
of experimental data.

Figure 1(b) shows a schematic description of (a) the random ferromagnetic, (b) the random
antiferromagnetic and (c) the spin-disordered arrangements on a fcc lattice.

Magnetic moments are very sensitive to the lattice spacing. This is particularly true for
itinerant magnets. The Stoner criterion clearly shows that magnetic moment is dependent on
the effective d-band widths, which in turn depend upon the lattice spacing. We have minimized
the total energy as a function of the lattice parametera and reported results for the minimum
configuration. In figure 2 we show the total energy versus the lattice parameter for the alloy
with 90% Fe. The minimum occurs ata ' 3.625 Å which is slightly less than the Vegard’s
law value of 3.64 Å. This is expected, since the LSDA overestimates bonding, and usually
predicts a lower lattice parameter for the lowest-energy configuration and therefore, by the
Stoner criterion, a lower magnetic moment.

In figures 3(a) and 3(b) we show the density of states for the ferromagnetic AuFe alloys for
concentrations of (a) 2.5% and (b) 90% of Fe. For case (a), the host Au partial density of states
resembles that for pure Au, with little exchange splitting. The impurity Fe partial densities
of states show very little structure, but are exchange split, giving rise to local moments on
the Fe atoms. For case (b), the host Fe partial densities of states show exchange splitting and
structure, while the impurity Au partial densities of states have little structure. They however
show a small exchange splitting, indicating a small induced moment on the Au atoms.

Figure 3(c) shows the density of states for a concentration of 25% of Fe. Linget al [6]
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Figure 2. Total energy versus the lattice parameter for the alloy with 90% Fe.

have also studied the same alloy using the KKR-CPA. Comparison with their results shows that
for both the majority and minority bands the KKR-CPA overlaps between Au and Fe partial
densities of states are larger than those shown in our results. In fact, the majority Au and Fe
bands in the KKR-CPA have almost identical band centres, a feature which does not show up
in the TB-LMTO-CPA calculations either.

Figure 3(d) shows the density of states for the 10% Fe alloy in the random moment
configuration. The Fe partial density of states is locally exchange split and that for Au shows
considerable structure. Again the results are similar to the KKR-CPA work of Linget al [6]
with slightly smaller overlap between the Au and the Fe densities of states.

For the high Fe concentrations the Au atom carries almost no magnetic moment, while the
Fe↑ and the Fe↓ states are exchange split in energy, giving rise to a local magnetic moment.

In figure 4 we plot the total-energy differences between the random-moment phase and the
ferromagnet:Erandom−Eferro. The antiferromagnetic and the paramagnetic arrangements have
higher energies across the entire concentration regime, and so are not mentioned in the figure.
In the high-concentration regime, the difference is positive. This means that the ferromagnetic
arrangement is the more stable. Around 10%—in fact at concentrations very slightly below
this—the energy difference changes sign. In other words, in these low-magnetic-concentration
regimes, the random spin configuration appears to be the stable phase.

In figure 5 we plot the local and averaged magnetic moments as functions of the Fe
concentration. The local moment on Au is small throughout the concentration range, but is
larger for larger Fe concentrations. This is expected from the larger exchange splitting in the
Au partial densities of states for higher Fe concentrations as shown earlier. The local moment
on Fe increases as the concentration of Au increases. In the concentrated Fe regime, where
the overlap between Fe atoms is large and the Fe partial densities of states are wider, the local
moment is around 2.2µB/atom. As the concentration of Au increases, the Fe partial densities
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Figure 3. The partial density of states on the Au and Fe atoms in ferromagnetic AuFe alloys at
the following Fe concentrations: (a) 2.5%, (b) 90% and (c) 25%; and in the random-moment AuFe
alloy at an Fe concentration of (d) 10%. The Fermi energies are shown as dashed curves.
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Figure 4. The difference between the total energies of the random and ferromagnetic phases as a
function of the concentration.

of states become narrower. The Stoner criterion would suggest a higher moment, which is
indeed observed. The local moment on Fe in the impurity regime is about 3.4µB/atom. We
should compare this with the moment on free Fe atoms, which is about 4µB . This simple
argument carries through particularly, since the overlap between the Fe and Au d bands is
rather small. A rather similar increase in local moment is also seen when the Fe d densities of
states become narrower when bcc Fe overlayers form on fcc Ag substrates [19].

The average moment decreases steadily, initially linearly, as the concentration of Fe
decreases. At the transition to the random-spin phase, this drops steeply to zero and remains
so in this new phase. This behaviour is supported by experimental data on the alloy. The
concentration regime around 14%–10% is bedevilled with possible mixed phases, micto-
magnetic phases and cluster glass phases, all of which require short-ranged magnetic ordering.
Since short-ranged and clustering effects are absent in our work, we cannot hope to reproduce
such ‘dirty’ behaviour.

A note on a rather unsatisfactory feature of the results quoted above: near the concentration
at which the random spin arrangement ‘wins’ over the ferromagnetic one, the energy differences
are at the very limit of accuracy of the LMTO-ASA method itself. However, the trend of the
energy difference decreasing with decreasing concentration of Fe and finally changing sign is
what we emphasize, rather than the actual energy difference values themselves.

Finally, for the 90–10 alloy we have carried out the augmented-space recursion ink-
space [20] to obtain the spectral functions and hence the complex bands. This is shown in
figure 6. The d bands of Au and Fe are well separated—this is a case of a split-band alloy. The
eg–t2g bands of Au are clearly seen beginning at−0.6 and−0.5 Ryd at the0 point and flaring
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Figure 5. The variation of the local magnetic moment per atom in the ferromagnetic phase as a
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Figure 6. The complex bands for the 90–10 AuFe alloy obtained from augmented-space recursion
in k-space.
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out to a width of around 0.35 Ryd at the X point. Below these bands we see the top of the
hybridized s band dropping below−0.8 Ryd. Thesehostbands of Au are not characterized
by large lifetimes. Most of the width arises from hybridization rather than disorder scattering.
The up and down bands of Fe show up clearly, starting at−0.35 Ryd and−0.15 Ryd at the
0 point. These impurity bands are narrow (as is characteristic of impurity bands) and the
lifetimes associated with their widths (particularly in the minority band) are large. We expect
impurity bands to show the maximum effect of disorder scattering. It is known that because of
strong-disorder scattering, the coherent potential approximation does not work well in impurity
bands. The Fermi energy cuts the minority band just above half its width. The lifetimes of the
bands crossing the Fermi surface are large and we expect the Fermi surface to be very fuzzy
in these alloys.

We must comment on one more aspect of a true spin-glass phase which is not reflected in
our work. We have chosen a global quantization axis with respect to which we describe the spin
configurations as↑ and↓. The random spin arrangement that we have described here is with
respect to such a picture. In a spin-glass phase, we expect there to be a local quantization axis
which randomly varies from site to site. Description of such locally varying quantization axes
will require a generalization of the LSDA approach itself. There have been several attempts to
describe ‘non-collinear’ magnetism. Gyorffyet al [21] and Sandratskii and K̈ubler [22] have
carried out extensive work on non-collinear magnetism. The review by Sandratskii [23] gives
an extensive account of the approach. Lorenz and Hafner [24] and Spis̆ak and Hafner [25]
have also given a beautiful description of how to deal with such random arrangements of spins.
Our intuitive idea of what the spin arrangement in a spin glass should be is much nearer to
such a description. We propose to use these ideas in a subsequent communication.
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